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We show that a Z(N2)-spin model proposed by A. B. Zamolodchikov and M. I. 
Monastyrskii can be conveniently described by two interacting N-state Potts 
models. We study its properties, especially by using a dual invariant quantity of 
the model. A partial duality performed on one set of Potts spins yields a 
staggered Z(N)-symmetric vertex model, which turns out to be a generalization 
of the N-state "nonintersecting string model" of C. L. Schultz and J. H. H. Perk. 
We describe its properties and elaborate on its (pseudo) "weak-graph sym- 
metry." As by-products we find alternative representations of the N2-state and 
N-state Potts models by staggered Schultz-Perk vertex models, as compared to 
the usual representation by staggered six-vertex models. 

KEY WORDS: Two-dimensional spin and vertex systems; Z(N) symmetry; 
duality, partial-duality, weak-graph symmetry; integrability. 

1. I N T R O D U C T I O N  

The under s t and ing  of cri t ical  p h e n o m e n a  is great ly helped by the existence 
of s tat is t ical  models  in two d imens ions  which happen  to be exact ly  
solvable.  They are, for example ,  the Ising model ,  the six-vertex model ,  and  
the eight-ver tex model ,  respectively,  solved by Onsager ,  Lieb, and  Baxter.  
The  three models  exhibi t  very different cri t ical  behavior ,  a l though  they are 
re la ted to each other.  They  also served as p ro to types  for t w o - c o m p o n e n t  
systems, ei ther on sites or  on bonds  of a lattice. 

Genera l i za t ions  of the Ising, six-vertex, and  eight-ver tex models  exist 
at hand.  The mos t  p o p u l a r  genera l iza t ion  of the Ising mode l  is the N-s ta te  
Po t t s  model ,  involving only one in te rac t ion  p a r a m e t e r  between neigh- 
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boring sites. Although it has been the object of extensive studies since it 
was introduced, (1) it can be only solved in special cases. (2) The "vector" ver- 
sion of the N-state Potts model, known as the "clock model" or Z(N)-spin 
model, because the spin values lie on the unit circle, in its most general 
form is of recent origin(3); it depends on N/2 [resp. ( N -  1)1/2] coupling 
parameters for N even (resp. N odd). Little is known on this Z(N)-spin 
model except some symmetries and a duality relation. On the other hand 
extensions of the six-vertex model to N states per bond, in particular 
soluble ones, have been found by many authors. (4) Recently a 
generalization of the eight-vertex model has been proposed by Belavin (5) 
[hereafter called the Z(N)-Belavin model] which possesses an integrable 
case depending on three parameters, and has been studied rather exten- 
sively in the literature. (6) It is not known, however, whether the Z(N)- 
Belavin model is related to a Z(N)-spin model; one possible reason is the 
absence of some symmetries inherent to the eight-vertex model. 

A remarkable connection between spin and vertex systems is realized 
in the so-called Ashkin Teller model. (7) Originally this model is meant to 
be a four-state generalization of the Ising model, having also a duality 
relation. It was shown subsequently that it may be represented by two 
overlapping Ising models interacting through a bond-bond interaction. (8) 
A partial-duality transformation on one set of Ising spins (9) leads to its 
equivalence to a staggered eight-vertex systems, which becomes soluble in 
some special instances. (~~ It is therefore natural to raise the question 
whether there exists an N-state generalization of the Ising model which 
would display a similar connection to some N-state generalization of the 
eight-vertex model. In this paper we show that this question has a concrete 
answer. 

The starting point of our work is a model, called PNN, which has been 
introduced by Zamolodchikov and Monastyrskii in 1979 in their discussion 
on duality relations for generalized spin systems. (~I) The P,VN model seems 
to us an appropriate choice for study since it does concern spin having 
more than two values and yet controlled by only two coupling constants, 
which could be responsible for multicriticality and nonuniversal behavior. 

We begin by showing that the PNN model consists of two N-state Potts 
models lying on top of each other and coupled by a bond-bond interaction 
generalizing thus the Ashkin-Teller mechanism to Potts spins. In 1979 
Domany and Riedel (12) have also introduced such models under the name 
of (N~, Nr models, which they analyzed by global duality and renor- 
malization group methods. In particular, they discussed a number of 
special cases: (N,, 1), (N~,2), (2,2), (3,2), and (4,2) and gave their 
physical interpretation. In fact, these models turn out to be the PN~N2 
models of Ref. 11. For the sake of completeness, let us also mention that 



Z(NZ)-Spin Model 351 

there exists another generalization of the Ashkin-Teller model (13"~4) con- 
sisting of piling M-Ising spin families, coupled pairwise, which has been 
studied by mean field theory and Monte Carlo methods and recently 
solved in the limit M ~  oo. (~5) Such a construction for N-state Potts spins 
has just appeared and also shown to be soluble for N--, CO, (16) 

In Section 3 we discuss the main symmetry properties of an isotropic 
PNN model. A brief derivation of the duality relations obtained by 
Zamolodchikov and Monastyrskii is presented following the prescription of 
Wu and Wang. (17) We then show that the duality transformation may be 
simply represented by a reflection in a new set of variables obtained by a 
birational transformation from the original ones. We construct then dual 
invariants A Nj(j =h, v) associated to both horizontal and vertical bonds 
and observe that in an isotropic PNN model, ANj=AN may serve to 
parametrize a family of thermodynamical paths connecting the low-tem- 
perature regime to the high-temperature regime, which remain invariant 
under duality. We calculate also the various transformations of the weights 
connected to the so-called "inverse relations" of the partition function and 
comment on their behavior. 

The transformation of partial duality on one set of Potts spins is per- 
formed in the next section. The resulting spin system is then shown to be 
equivalent to a staggered vertex system with Z(N) spins on bonds of the 
medial lattice. We may think of our Z(N) vertex model as a generalization 
of the eight-vertex model. This is however not the Z(N)-Belavin vertex 
model but it appears to be the generalization of the N-state "noninter- 
seeting string vertex model" of Schultz and Perk. (18"19) This is the main 
result of this paper. More precisely we want to point out that the vertex 
system just obtained is a subclass of a more general class of Z(N)-sym- 
metric vertex models: the generalization of the eight-vertex model is cer- 
tainly not unique. 

In Section 5 we study this new Z(N)-vertex system for its own sake. 
We give a complete account of the symmetries of the partition function 
with respect to the N 2 weights defining the system. The main part of the 
discussion is devoted to establishing a (pseudo) weak-graph symmetry 
which generalized that of the eight-vertex model. Furthermore, the restric- 
ted Z(N)-vertex system describing the PNN model may be viewed as the 
generalization of the special (in fact critical) eight-vertex model associated 
to the symmetric Ashkin Teller model./9) It is thus possible to reduce it via 
a weak-graph symmetry transformation to a Schultz-Perk model, in the 
way a critical eight-vertex is brought to the form of a six-vertex model. (2~ 
Then the dual invariant introduced earlier in Section 3 appears as the 
natural generalization of Lieb's invariant of the six-vertex model. Following 
the results of Schultz and Perk (19) one may already infer when the subclass 
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of Z(N)-vertex system is integrable; we have not however searched for the 
solubility conditions of the general case. 

Specializing now to ANj= --1 ( j =  h, v) we obtain the following result: 
the N2-state Potts model is equivalent to a staggered Schultz-Perk vertex 
system, which may be equivalently described by N-color nonintersecting 
polygon contours on a square lattice. 1~9) This is an alternative represen- 
tation to the known staggered (two-color) polygon contours of Wu, (21~ 
itself equivalent to a staggered ice rule. At criticality, in the ferromagnetic 
regime, the staggering effect vanishes and the Schultz-Perk system has the 
same free energy as a six-vertex system. This coincidence, which was obser- 
ved some time ago ~ and analyzed recently with the Bethe-ansatz wave 
function, (~9) is in no way accidental but can be fully explained via the 
equivalence to the N2-state Potts model. 

In the last section we consider a generalization of the PNN model by 
breaking the Z(N 2) symmetry down to Z(N)| Z(N). We discuss then the 
equivalent vertex models in some special limits. In one instance we find the 
generalization of Wu's representation of the Ising model by staggered ice 
rule having only two nonvanishing weights: here the N-state Potts model is 
represented by a staggered system of "N-color corners" only with two non- 
vanishing weights. (22) We conclude this study by giving a short account of 
what has been accomplished and the listing of some unsolved problems still 
open for investigation. 

2. THE PNN M O D E L  

Zamolodchikov and Monastyrskii originally constructed the PNN 
model by taking a spin space consisting of N 2 elements: sT, labeled by 
i =  1, 2 ..... N and a =  1, 2 ..... N and by defining an interaction between 
neighboring sites of a square lattice, through a Hamiltonian H(s~(n), s~(m)) 
displaying a maximal symmetry Z(N2): 

flH(s~(n), s~(m)) = {f12 + (J~l - -  /~2) (~tj - -  / ~ 1 0 i j 6 a b }  ( 1 )  

where fl = (kT) 1, 31.2 = el.z(kT) 1 and n, m are two neighboring sites. 
To recast the system in a more familiar setting t17) we compute the so- 

called U matrix associated to sites n and m, whose matrix elements are 
exp fiH(s~(n), s~(m)). The symmetry Z(N 2) is most appropriately taken 
care of by using the matrix representation of the Z(N2)-generalized Clifford 
algebra, which is of recent origin in the mathematical literature. (23) For our 
purpose we shall consider the particular representation with two generators 
A and R defined by 
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(11 i) A =  ( , R =  . . �9 . ' �9 

0 ~N 2 -  1 0 

with ~" = exp(2i~z/N 2) and the properties 

(2) 

AN2= RN2='~ N2 , RA =~AR (3) 

Inspection shows that the U matrix of the PNN model is of the form 

N--1 N--1 N 1 

U=~N2Af-O') E E RJN+I+CO" E RjN (4) 
. /--0 l-- 1 l - -  1 

where co = e 32 and cott .-__ e fiX 
We now show that this U matrix can be alternatively obtained by 

taking two sets of classical spins at a given site n, i.e., {S,} and {S',} 
taking the values: 1, ~ ..... ~N ~ with ~ = ~X and constructing the following 
interaction: 

f lH~ = {Ko + KB(S., S,.) + K"B(S'~, S~) + (N-- 1 ) KB(S., Sm) B(S;~, S'~) } 

(5) 

where K and K" are coupling parameters and B(S,, Sin) is given by 

N 1 

B(S., S,~) = ( N -  1 ) - 1  E SnJ S r  nN j 

j - 1  

= {~(s~ - s i n ) -  ( N -  1) -1)  (6) 

By computing exp flH.~ and choosing Ko = - ( N K + K ' )  we see that we 
reobtain precisely Eq. (4) with 

co '=exp ( N _ I ) K  and e)=exp - N K  ( N _ I ) K "  (7) 

Since e x p [ K ( N -  1) 1 + KB(S,, S~)] describes the matrix elements of 
a U matrix of an N-state Potts model, (~7) the Pux model may be viewed as 
two N-state Potts models lying on top of each other and interacting 
through a bond bond type of interaction, i.e., B(Sn, Sm) B(S'n, S'm), which 
generalizes the symmetric Ashkin-Teller construction to Z(N) spins. 

Then the partition function ~eMM, for a lattice of M columns and M' 
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rows with toroidal boundary conditions, of an anisotropic PNN model, is 
(h, horizontal; v, vertical) 

~fgg'(C%, CO;'; COb, CO~,') = ~ IF[ exp flH~.m ~ exp flHh.m (8) 
{Sn}{S 'n}  ( n , m ) v  ( n , r n ) h  

which can be expressed as the M'th power of a transfer matrix T(M): 

T(M) = T:(M) TI(M ) (9) 

~MM'(CO., CO;; COb, CO;) = Xr{ T ( / ) }  g' (10) 

where TI(M) and T2(M ) are given in terms of A m and R.,, the matrices pf 
Eq. (2) at site m on a given row by 

T 1 (M) = exp A j N  + l ( A  j N  + l ] + 
m=i 1)j= l=1 m \ ~ * m + l ]  

Kh' N 1 3 
_ _ _  ~ AjN~AiN ~ + + K o ]  (11) 

~ f N~I N~I N 1 t j N  + l tt j N  Tz(M) ---- ~ U 2 27 (J) v R m  + coy Rm 
m=l j=0 l=1 j=l 

with coj, coj' ( j=h,  v) related to Kj and Kj' by Eq. (7). 

3. PROPERTIES OF THE PARTITION FUNCTION 

First, we quote a trivial symmetry S which consists in rotating the lat- 
tice by 90~ tt, f! tt t! S: ((~, co~, C0h, COb) ~ (COh, COb; CO~, CO~) (12) 

t! tr. t/ ~fMM'(CO~, ~0~; COb, CO'l)= ~M'M(COh, COb, CO~, CO~ ) (13) 

Let us divide now the square lattice into two interpenetrating sublat- 
tices such that a site of one sublattice is surrounded by the four sites of the 
other sublattice. For N even, the values 1, ~ ..... iN-1 taken by a classical 
Z(N) spin S. at site n are symmetric with respect to sign reversal. Thus it 
makes sense to speak of the substitution S . ~ - S .  on one sublattice; 
changing simultaneously then Kj--* -K j  but keeping all S'. spins and Kj' 
their coupling/s fixed we see that Eq. (5) remains invariant. This fact can 
be written out as a transformation T for N even and j = v, h: 

T: co;' -~ (co/)-1= co/T 

co;. %(~o;)-2(N 1)iN=col 
~ f M M ' ( ( L ) v ,  O ) v ;  (J )h '  O) th t )  T ,,v .... r.,,,,r~ (14) 
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An invariant combination of weights under T is 

CO;/(N -- 1 ) N 2 

- -  - exp K;' (15) 
coy ( N -  1) 2 

For N =  2, there is even a higher symmetry due to the fact that a product 
of Ising spins is again an Ising spin. 

For N odd, T does not exist since it maps the system into a new spin 
system which takes values in the set of Nth roots of ( -1) .  

Most spin systems display a duality symmetry, a property which states 
that the partition function can be alternatively, up to trivial factors 
expressed as the partition function of another set of spins defined on the 
dual lattice (in our case the dual lattice remains a square lattice) with 
appropriate weights, rational functions of the original weights. The 
functional form of ~ M M '  remains thus the same for a specific substitution of 
the weights found already by Zamolodchikov and Monastyrskii for the 
P N N  model. Mathematically, it is a kind of Fourier representation of ~ M M '  

first observed by McKean for the Ising model later on generalized to 
several groups by Zamolodchikov and Monastyrskii. (1') 

Here we take advantage of the simplicity of the pevious matrix 
representation and calculate explicitly the dual weights: co*, coj'*, j =  v, h. 
Our starting point is a relation derived by Wu and Wang (17) which states 
that the dual weights are obtained by the non-normalized eigenvalues of 
the matrix U. 

The diagonalization of U can be easily done by using a N 2 x N 2 matrix 
D defined by (1) 

D = N  ,~ij, i a n d j = 0 ,  1, 2,..., N 2 -  1 16) 

which has the property of turning R into A: 

D 1RD=A 

The transform of U is diagonal of the form 

N--1 N--1 N 1 
O 1 U D  = *~ N2 -}- CO Z Z AJN+k+CO"~ AjN 

j 0 k - - I  j - -1  

We find the following eigenvalues: 

2 0 = 1 + (N-- 1)co" + N(N-- 1)co 

]~N = •2N =---- " =- I~N(N 1) ~- 1 "}- (N-- 1 )co" -- No) 

2t= 1 -co",  I#O,N, 2N,...,N(N-1) 

17) 

18) 

(19) 
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Hence the duality relations for the weights are 

1 - -  co'/*,v 

co*h = 1 + (N--  1)co~,~ + N ( N -  1)cob, ~' 

1 + ( N -  1 )co~,~ - Ncoh,~ 
C%,h I + ( N _ I ) c o , ~ , ~ + N ( N _ I ) c o h ,  ~ 

and for the partition function 

(20) 

t t .  __  , , tt ~MM'(co~, co~, coh, coL') -- AMM':ffMM'(co~,, co~ ; CO*, CO~") (21) 

where 

A M M , = N  2(~ MM'I{1 + (N -- 1)(.o" + N ( N -  1)co,} MM' 

• {1 + ( N -  l)co~' + (N - 1)Ncoh} MM' 

The linear birational transformation defined by Eq. (20) can be reduced to 
a reflection by the following choice of variables: 

Nco ~,h 1 -- co [h 
a~,h-- 1 + ( N _  1)co~,h, b~,h = 1 + ( N _  1)co,,h (22) 

or conversely 

a~,h 1 b~.j, 
c o ~ , h - l + ( N _ l ) b ~ ,  ~, co~ ,h=l+(N_~)b~ ,h  (23) 

Then Eq. (20) can be recast as 

b h ,  v 1 - -  a h ,  v 
co~*h - * "  - ( 2 4 )  

1 + ( N -  1)ah,v' co~.h 1 + (N--  1)ah,~, 

Now for dual weights co* and @'* there corresponds according to Eq. (24) 
a* and b* which are simply related to aj and bj by 

NCO v*h ~ h,~ 
a v * h = l + ( N _ l ~ , , , , . - - l + ( N _ l ) a h , v + ( N  1 ) _ ( N _ l ) a h . v = b h , v  (25) �9 ] ~ , v , h  

r t ,  1 --CO~,h 1 + (N--  1)ah,v-- 1 +ah,~ 
b ~ , h - - l + ( N _ l ~ . , , . . - - l + ( N _ l ) a h , v + ( N _ l ) _ ( N _ l ) a h .  --ah,~ (26) 

�9 ] u.- 'v ,h 

Equations (25), (26) show that the duality transformation is a simple 
reflection in these new variables; we shall see in the next section the 
physical meaning of the new weights aj and bj (j  = v, h). 
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The duality transformation D for the weights of Eq. (20) have further- 
more a remarkable representation in a new set of variables: AN,S, xj 
(j = v, h) defined by 

= - -  -- J /coJ Xj = N(.Oj 
ANj ( N - 1 ) c o j - ( U - 2 ) c o j '  co ''~ 1-coj'  (27) 

" 1 - coj' ' 

Then 
D: (AN,v, xv;  AN, h, Xh) ~ (AN,h, Xh l; AN,v, X~ - t  ) (28) 

This is a simple exchange of directions h ~ v, whereby both AN, keep their 
functional form and x is replaced by its inverse. For a practical purpose 
one may assume A N,~ = A N,h = A u to have a "partial" anisotropic system for 
which the self-duality condition takes the form: 

XhXL. = t (29) 

On the manifold A N= const, the D transform has the usual form of the 
Potts model. (17) Again the meaning of ANj and :vs. will become clear in the 
next section. Let us quote only that they can be expressed in a very 
suggestive form as 

A N j = ( N _ I ) a ~ + b ~ - I  (%-- 1)(bj-  1) x , =  bj (30) 
5ajbj ( N -  2) Najb: ' a/ 

To illustrate the role of the parameter ANj we consider the plane (co, co") 
for an isotropic PNN model, as shown by Fig. 1. ~11) The self-dual line of 
equation 

Nco + co" = 1 (31) 

is believed to be the locus of phase transition points, at least partly. 
Ii1 genera? AN=cons~ corresponds to a second-order curve going 

through (0,0) and (1,1), hence may be best regarded as a ther- 
modynamical path invariant under duality. AN labels, however, some 
special cases of the spin system: 

A N = - - m  is represented by co"= 1 or co = 0, these lines describe N-state 
Potts models with their respective critical points Ii and I2: 

( - - , '  , , )  ( , ,---') I, co r  1 co~=[ and 12 co~--O, co, , f N + I '  

If N is even we known that, because of the T symmetry from 
I2 starts a critical line horizontally, the slope of its dual line at 
I1 can be found by D. 

822/42/3-4-8 
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AN= - 1  is the line of the N2-state Potts model (co = co") which has a 
critical point on the self-dual line I3 (cot = c0s 1 / (N+ 1)). It 
is expected (m that the two critical lines from I1 and 12 willl 
meet at 13. 

A N = N - -  1 is the pair of straight lines: 

co= 1, co"= - ( N -  1)co 

There is another curve with AN=0 intersecting the self-dual-line at 
coo = {1 + [N(N-  1)] 1/2} 1 (in fact a trajectory AN---= const meets the self- 
dual-line at coo= {1 + IN(N-1)--N3N] 1/2} 1). For N = 2  we know that 
the two Ising spin models making up the Askhin-Teller model will 
decouple at A2 = 0 and one may consider it as a vector-Potts model of four 
states, hence it is soluble. But when N # 2, there is no decoupling since 

( N -  1)co 2 
co" - (32) 

( N - 2 ) c o +  1 

and this is not the path of the N2-vector Potts model. We do not know yet 
whether the system is integrable along this line A N = O. 

Finally as in the Ashkin-Teller model, there is a "duality" limit 
beyond which the dual weights becomes negative 

1 + ( N -  1)co" = Nco (33) 

Equation (7) shows that for K " =  0 we have the curve 

co, t= (co)N/N 1 (34) 

which is obviously not invariant under duality, but it coincides with the 
condition AN=0  for N = 2 .  This curve is tangent to the co axis at 
c o " = c o = 0  and to the duality envelope Eq. (33) at c o = c o ' =  1. Hence its 
dual transform will be also tangent to co" = 0 and the duality envelope, and 
is comparable to the vector 5-state Potts model line in the phase diagram 
of a Z(5) model. {24) 

For N >  2 the system is not decoupled as for N = 2. The bond weight 
is now according to Eq. (5): 

exp{K+ ( N -  1) KB(S'nS') B(SnSm) } (35) 

Since B(S'nS') takes only two values 1 and { - ( N -  1) -1} we have an N- 
state Potts model with the following random coupling: 

exp NKB(SnSm) if S'n = S~, 
(36) 

1 if S" ~ S" 
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Thus in the partition function we can think of the summation over {S',} as 
a sum over all possible distributions of coupling constants with values NK 
or 0 on all the links of the lattice. The sum over { S, } is then performed for 
each of such configurations of couplings. Note that the intersection of 
this curve with the self-dual line has an abscissa COx between 
{l+[N(N_l)]l/2}<col< N 1. 

Besides the symmetries just studied, the partition function of spin 
systems exhibits also "automorphic" properties, which result from the 
existence of the inverse transfer matrix. Since T=  T2 T~ as shown in Sec- 
tion 2, the inverse of T~, which is diagonal in the representation of Eq. (11) 
is simply 

(T1) 1 = Tl(coh 1, ~h-l,,) (37) 

T2 is not diagonal but a product of local transfer matrices U which can be 
readily inverted. It is, however, much simpler to observe the following. (25~ 
Let J be the transform of the pair (co, co') of weights: 

J: (co, co")~ (co% c0" 1) (38) 

then the inverse transform Ih = J is 

I h  = ((dJh,  CY'Otht)---+(O'}h -('t')-l- h , . . . .  O h  = O.)h 1,~., (39) 

In order to calculate I~ we calculate the effect of the sequence of transfor- 
mations D, J, D on the vertical weights co~ and co': 

I~" (co/co2) ~ (oo, ~;') (40) 

where the inverse weights ~% and r are 

(co~' - 1) 

~  1)CO"-NeGJ[I+(N 2)co"+(N-1)zco~]+co~(1-co")(N 1) 

c o ; ' -  
N(N 1 2 ,, ) c o y - N ( N - 2 ) c o . c o ~  )co~-co~-(N- 1 .2 ,, 

(41) 

[ l + ( N - 1 ) c o "  Nco~][l+(N-2)co'~'+(N 1)2cov]+co~(1-co")(N-1) 

(42) 

Then the partition function obeys the "inverse relation"(26): 

t/. tt tr t! ~Mu'(COhcoh, COo, COy ) ~MM'(~,,Oh, O.COo ) 

= {1 +N(N-  1)(o~o~ + ( N -  1)co;'co;'} i g '  
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The set of involutions D, S, I (made up of Ih and Iv) and T for N = even, 
generates the so-called "automorphy group" of the model, a concept newly 
introduced in Ref. 25 which turns out to be of interest for most spin 
systems. We now reformulate the inverse transform in the variable ANd and 
xj. But let us first do it for J; from the definitions 

1 - co" ( N -  1 )co - ( N -  2) co" - co'/co 
x= N---~' AN= 1--co" (43) 

We can eliminate co-1 to find the equation obeyed by (co"/co- 1), which we 
call f(x, AN): 

f2( x, 3U) + (1 + X) Uf(x, AN) + Nx(1 + A) = 0 

In the physical regime where both co and co" are positive we should take 

f+(x, AN)= -- 1 = ~  {--N(1 + x ) +  [N2(1 +x)Z-4Nx(l --~ Z~N) l/2 } 

(44) 
as long as d N < --1. 

Then 
J: (x, AN) --* (X, AN) (45) 

with 

x ~=NAN--X-I+ (N-2)x- l f (x ,  AN) (46) 

N--2 
AN=AN -~-X {xNf(x, AN)--U(l+x)f(x, zJN)--Xx(l+dN)} 

=AN+(N-2){x ~U(x, AN)+(I+AN)} (47) 

Now using a scaling relation for f(x, AN) , deduced from Eq. ( 4 4 )  

f (x  1, AN)=x-if(x, AN) (48) 

we note that both x and A u are expressible in terms of x I and AN: 

AN=AN+ (N--Z){/(X -1, Azv)+ (1 +AN)} (49) 

x - l = ( N A u - x  1)+(N-2) f (x  I, AN) (50) 

For N > 2 ,  the transformation is then not algebraic, except for AN= --1 
and.AN = N - 1  which corresponds to straight-line thermodynamical paths 
in Fig. 1. We can now express the inverse transform as follows: 

I:(AN, h;Xh~(AN, h;:I ) (39a) 

\AN, vXv / \ANy; , ( 4 0 a )  
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1 r 

Fig. 1. Expected phase diagram of an isotropic PuN model. 

whereby 

X h  I ~--- (NA N,h - -  X h  I ) ~- ( N -  2) f(xh 1, A N,h) ( 5 0 a )  

Ax, h=Au,h+(U--2)[ f (xhJ,  ZJN, h)+(l+ZlN,h)] (49a) 

and in the vertical direction 

x~ = (NAN, ~ -- x~) + ( N -  2) f(xv, AN, v) (50b) 

AN,v=ZlN, v+(N--Z)[ f (xv ,  AN, v)+(I+AN, v) ] (49b) 

We have taken into account the simple behavior of AN, j and xj under the 
duality transform. Although this structure is simple, the nonalgebraic part 
due to the function f renders the computation of the group elements of the 
automorphy group cumbersome. This would be done elsewhere. 
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Let us only observe at self-duality: 

AN, h = AN, v = A N and XvX h : 1 

the system of Eq. (50a), (49a) is the same as Eq. (49b), (50b). The case 
N =  2 (symmetric Ashkin-Teller model) has been treated in Ref. 27. The 
inverse transform I leaves thus the self-dual manifold globally invariant. 

4. EQUIVALENCE TO A STAGGERED VERTEX MODEL 

In this section we perform a partial duality on one set of N-state Potts 
variables to construct an equivalent vertex model. The idea has been 
applied to the Ashkin Teller model by Wegner in 1974. (9) To carry out the 
demonstration, we shall follow basically the approach of Baxter <2~ and 
make use of the duality relation for the N-state Potts model of Wu and 
Wang. For the sake of simplicity we consider the isotropic PNN model here. 

From the previous section we know that the partition function is writ- 
ten as 

~q'MM '= ~, I~ exp{KB(SnBm)+K"B(S'S'm) 
{Sn}{S'.} (n,m> 

+ K ( N -  1) B(S.S,n) B(S'S'm)+ Ko} 

where Ko = NK + K". It can be rearranged as 

(51) 

"LTMM'= ~ [l  exp{KB(SnSm)+Ko} exp{Ln,~B(S'n, S~,)} 
{Sn}{Sn} (n,m) 

with Lnm = K " +  (N-1)KB(SnSm)  , which takes only two values: 

[ K " + ( N - 1 ) K ]  or ( K " - K )  

(52) 

For each given {Sn} spin configuration the sum over the spin configuration 
{S'n} represents the partition function of a N-state Potts model with 
inhomogeneous couplings {Lnm}: ~N-Potts(Lnm). Consequently we can write 
Eq. (51) as 

~MM '= ~'~ I~ exp{KB(Sn, Sm)-kKo}~N-potts(L,,m) (53) 
{Sn} (n,rn) 

The strategy is to replace ~N_Potts(Lnm) by the corresponding quantity 
defined on the dual lattice and then reexpress ~MM' n O W  with two sets of 
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spins, one on the lattice, the other being on the dual lattice. The Wu-Wang 
duality ~ relation is given by 

~#U.Pot ts(Lnm)=N 1 (MM')* H { e L " m - e - L " M ( N - I ) ~  s 
< n,m ) 

x [ I  oL.%/<N- I )~  m *  ~ (54) ~ N_Pottst,~nm ! 
<n,m)* 

The first product is carried out over pairs of sites (n, m )  and the second 
one over pairs of dual sites (n, m)*.  Now let (M, M')* be the number of 
dual lattice sites and the relation between our notations and Wu-Wang 
notations is deduced from the expression of the corresponding U matrix for 
the N-state Potts model: 

~toWu Wang//d-Wu_Wangi __ ( L.m.~ 
N-Potts ~,'~nm 1 - -  [ I  e x p  ~N_Potts(Lnm) ( 5 5 )  

<,,.m> N - 1 J  

N 
K~Wm u Wang__ L.m (56) 

N--1  

or equivalently after exchanging Lnm and L.*" 

~#N.Potts( Lnm) = 

1 
~Lnm/( N--1) "~N-Potts( L *nm) N1--MM'I--I<.,m) * {eL~m__e--L*/(N 1)} ~I(n,m) t~ 

(57) 

Now we replace ~N_Potts(Lnm) by its definition as sum over all spin con- 
figurations {S'n*) on dual lattice sites and with dual coupling * �9 Znm �9 

"~N'Potts(L*nm) = E H e x p  L*mB(S'n*, S'm*) 
{S~*} (n,m)* 

Now with the identity: 

L.mB(S.  , S'.*, ) = ~  + exp * '* 1 {eL. m ( N -  l )e -L.*/(N 1)} 

+----TN- 1 {eL.. - e  L.*/~N ~)} B(3~., S~*) 

(58) 

(59) 

we can reexpress the partition function of the N-state Potts model as 

'L  "~-- N 1-(MM')* ~eL~m-}-( N-1)e-L*m/(N 1) 

N-Potts~ rim] -- E H | - - *  -- Lt~m/(N-- 1) 
{S'n* } (n,m)* ~ e Lnm- e 

+ ( N - 1 ) B ( S ; * , S ' * ) t  [ I e  Lnm/ ( N 1) 
) ( n,m ) 

(60) 
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Using the duality relation for the coupling constant we arrive at an 
expression only function of L,m, but summed over spins on dual lattice, i.e., 

~N-Potts(Lnm) =NI-(MM')* E 
{s~* 

I1 
<n,m >* 

{eL~ L'"/(N-~)B(S'*,Sm*)} 

(61) 

We substitute this expression mto Eq. (53) and obtain an expression for the 
partition function of the PNN model: 

~MM' I~ {exp[NKB(S~, Sm)+ K"] 
{Sn}{S'n* } <n,m> 

<n,m>* 

} + ( N - 1 ) e x p  ( N - l )  B(S'*,S2*) e K~ (62) 

This is a summation over the combined spin configurations {Sn} and 
{S'n*} which are grouped as in Fig. 2. A pair of spin Sn, Sm interacts thus 
with a pair of spin S'n*, '* Sm, lying in a direction perpendicular to the direc- 
tion of S~, Sm with a 4-spin weight: 

w(Sn '* { , Sm; Sn , S'*) =exp Ko exp[NKB(Sn, S,,,) + K " ]  

[ 1} + ( N -  1)exp ( N -  1~ B(S'n*, S;*) (63) 

This is the generalization of Eq. (6) of Ref. 28 to Z(N) spins. Depending on 
whether we consider vertical or horizontal links of the lattice we have the 

t ~  
$ n  

I 

I 
t ~  

S n I S m S 
I n 

I 
$'* 

rn 

(a) 

Fig. 2. 

n 

$ 
m 

(b) 
Geometry of partial duality on S',, spins. 

S j~  rrl 
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two geometrical situations of Figs. 2a and 2b. We show that w(S,, Sm; S1m ~, 
S'*) may be interpreted as weights of a Z(N)-vertex system defined on the 
medial lattice 5eM (2o~ associated to the original square lattice. Let us con- 
sider Fig. 2a and define on the four links round a site of 5f'a4 the bond spins 
by 

~r = S,,S',, ~ = S'nSm 
(64) 

o' = S'mSm, "C' = SnS'm 

We next prove that they obey the constraint (see Fig. 3) 

era' = rr '  (65) 

which may be interpreted as a Z(N)-vertex rule on 5~M (generalizing the 
eight-vertex rule for which N =  2). Since the bond variables B(Sn, Sin) and 

S,  , S~,*) has only B(S',*, S'm*) take each one only two values, w(S,, Sin; '* 
four values: 

a= {exp Ko}{exp(NK+ K ' )+(N-1 )exp[  

c= {exp Ko} {exp(NK+ K ' ) - ( N - 1 ) e x p [  

(N--  1) = [1 + ( N -  1)col 

( N - 1  = [ l - c o l  

K t 

= [co" + ( N -  1)col 

K' 
f =  {exp Ko} {exp [ ( N - l )  

(66) 

ij 

I 
r "r 

Fig. 3. Labeling of bonds round a vertex. 1~ I 
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The weight a is obtained for B(Sn, Sm)=B(S'~ *, S~,*)= 1 or when 
S , =  Sin= ~1 and S'n*= S'* = ~k with l, k = 0 ,  1,..., ( N - 1 ) .  This choice 
implies that the bond spins are such that 

a = a ' = ~ = r ' = ~  p, p = l + k  (modN) (67) 

and that there exists N vertex configurations shown in Fig. 4a, they can be 
deduced from one another by Z(N) symmetry. 

~ N-l 

I ~ ~N-I 
O a a 

(a) 

~2 ... I 

C I C 2 CN_ 1 

(b) 

Fig. 4. 

I ~2 1 . . . ~N-1 

d I d 2 dN_ I 

(c) 

Configurat ions of the Z(N)-symmetr ic  vertex model and their respective weights. 
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~ m 

~ t + m  

f t m '  L m  = 1 , 2 ,  . . . .  , N - 1 

(d) 

The weight c 
( N -  1) -1 or  when 

Sn=Sm~--~ l, 

S', = ~ and 

N e v e n  

(e) 

Fig. 4 (continued) 

corresponds  to B(S, ,  Sm)= 1 

l = 0 ,  1,..., ( N -  1) 

S -  = ~k,, k = k '  

k , k '=O,  1 , . . . , (U-1)  

consequent ly  the bond  spins are such that  

and a ' = r = ~  t+k' 

and B( S'~*, S'm* ) = 

(68) 

(69) 
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and fulfill Eq. (65). For chosen a since o-#o-' there are only ( N - 1 )  
possible values for a', thus N -  1 vertex configurations of the type shown in 
Fig. 4b. Letting a run through 1, {,..., r we generate all ( N - 1 )  vertex 
configurations [-by "Z(N)-spin-flip"] which belong to the same weight c. 

At this point we notice that if we affect to each configuration of Fig. 4b 
a weight ct, l =  1, 2,..., ( N -  1) and let it be the same for any other con- 
figuration deduced by Z(N)-spin-flip then these weights are those of a more 
general Z(N)-symmetric vertex model. 

For weight d, it suffices to repeat the same argument after exchanging 
the role of {Sn} and {S'n*}, or simply rotate the lattice by 90 ~ The con- 
figurations of the generalized Z(N)-vertex model are pictured in Fig. 4c 
with their weights dr, l = 1, 2,..., ( N -  1 ). 

Finally the f weight is related to the conditions B(Sn, Sm)= 
B(S'n*, S'm*)= - ( N -  1) -~ or 

Sn=~  t and Sm=~ l', l#l', l,I'=O, 1,..., N -  1 
(70) 

S'n = ~k and S~, = ~k', k ~ k', k, k' = 0, 1,..., N -  1 

Again Eq. (65) is satisfied because 

o-=~ t+k, a ' = ~  r+k', "c=~ k+c, z ' = ~  k'+/ (71) 

This leads to N(N-  1)2 configurations round a site of SM and when N is 
even we also could have configurations with two values of bond spins 
crossing each other (see Fig. 4d). In the generalized Z(N)-vertex model we 
define ( N - 1 )  2 weights flm as shown in Fig. 4e, any other configuration 
deduced by Z(N)-symmetry having then the same weight ftm. 

{~ {N-~ 

~m ~N-m ~ N-m 

{~' {N-~' 

,l:+f.'=m+m' (mod N) 
Fig. 5. Complex conjugation cg of configurations. 
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Because the values of the bond spins are unimodular numbers for 
N >  2, the vertex configurations can be related pairwise by complex con- 
jugation: ~ which maps c t to CN-Z, dm to dN m and f z m ~ f N  t,m ~ 
fZ, N m ~fN--I.N--m (see Fig. 5). When N is even there is one configuration 
weight besides a which maps into itself. We shall see the impact of c~ later 
on the symmetries of the model. 

In conclusion, we have obtained a new Z(N)-symmetric vertex system 
on LP M having N 3 configurations, coming from N 4 spin configurations of 
the original lattice, and depending on N 2 weights: a, c t, din, ftm with 
l, m = 1, 2 ..... N -  1. Moreover the PNN model is found to be equivalent (up 
to boundary conditions) to a staggered restricted Z(N)-vertex model on a 
sqare lattice whereby ct = c, dm= d, flm = f Our Z(N)-vertex system defined 
by Eq. (65) differs from the generalization of the eight-vertex model 
proposed by Belavin, because he assumes another constraint on the bond 
spins, namely, 

az = cr'r' (72) 

It is rather a generalization of the "N-color nonintersecting string model" 
of Schultz and Perk. (18'191 

5. PROPERTIES OF THE Z(N)-VERTEX MODEL 

The partition function of this Z(N)-vertex model, defined on a square 
lattice (M columns and M' rows) with periodic boundary conditions is 
given by 

~MM'(a 'c l 'dm' f lm) = Z aN(~)C~ "(c')dN(d'~)fN(ft')rn , ] h n  (73) 
{conf} 

where N(a), N(cl), N(dm), and N(ftm) are the number of vertices of type a, 
ct, dm, flm appearing in a given lattice configuration, and the summation is 
carried over all allowable configurations. In this section, we are concerned 
with the symmetry properties of this partition function. 

First, we observe that Eq. (65) goes into itself under a clockwise 
rotation of 90 ~ of the lattice. Simple inspection shows that this rotation S, 
as defined in Section 3 performs now the mapping 

S: (a, c,, din, f/m)-+ (a, dN_t, Cm,fm,N l) (74) 

~MM'(a, C,, din, flm) = YM'M(a, dN z, era, fro,N--l) (75) 

However, only S 4 is equal to the identity and both S 2 and S 3 are still non- 
trivial and generate two more relations similar to Eq. (75). For the restric- 
ted Z(N)-vertex model, S becomes in fact an involution. 
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Second, Eq. (65) will not be altered, if we multiply the bond spin r 
(resp. a) by {P and the bond spin r' (resp. a') by ~N--p, with 
p =  1, 2 ..... N - 1 .  So "flipping" the bond spins consistently along an axis 
would generate another Z(N)-vertex system. But since {P r ~N--p for N >  2 ,  

the original homogeneous vertex system is now converted into an 
inhomogeneous system of vertices alternating along an axis, or even 
staggered if we alternate the spin-flipping operation from row to row, or 
from column to column. 

Third, Eq. (65) retains its form again if we multiply a or ~ (or resp. a'  
and v') by a same number {P, p =  1, 2,..., N - 1 .  If we carry out this 
operation for bond-spins located on parallel directions to a diagonal of the 
lattice, we may hope that the system has a "stairways symmetry," dis- 
covered by Fan and Wu <29) for the eight-vertex model. This is not so here 
because multiplying a and v by ~P generates a Z(N)-vertex system different 
from the one obtained by multiplying a'  and ~' by {P, except for N =  2. 

There is however a pseudo-weak-graph symmetry {29) D, which exists 
for N >  2 but is not an involution and satisfies D 4-= L It reduces only to an 
involution ut~der some restrictions, as we shall see later on. 

The starting point is a representation of the statistical weight 
associated to a vertex configuration of Fig. 4a-e subject to Eq. (65). 
Following Baxter (2~ we denote this weight by w(~', a'; a, r) which should 
take the values: a, ct, din, f~m for various allowable configurations of a, # ,  
~, r' round a vertex. Making use of Eq. (6) we can write 

f N - - 1  '. ~) N -2 ~ykaekTN--kT,N-k w(z', a ,  a, = a* 
k = 0  

N - - 1  N 1 N - - I  N - - I  
+ 2 2 c~ak+lgr'lgN 'T't2N--t--k'~ ~ Z d~mGrn+kgr'kT2N-rn k g t N - k  

k=O l = 1  k = 0  r n - 1  

N 1 N - - 1  "1 
* k + l + m  tk 2N--m--k t2N--k -l 

+ Z Z f , m a  a * z (76) 
k = 0  l,m=l 

where a*, ct*, d*, f ?  describe the original weights through the linear 
relations: 

a = N -1 {a* 

ct, = N ~ {a* 

+ Z c * +  d * +  Z f,~,~ 
/ = 1  m = l  / = 1  m = l  a 

Z , 'm, + c* + ~'r"d*~ + ~ , ~  

l = l  m = l  l = 1  m = l  

(77a) 

(77b) 
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N 1 N l N 1 N 1 } 
mm':~ (77c) dm,=N -1 a* + ~. ~'m'c* + d* + 2 2 ~ fb~, 

/=1 m = l  /=1 m = l  

f N 1 N 1 N ~ I  N--1 t Zm' +mr * (77d) 
/=1 m = l  /=1 m = l  

Equation (76) can be considered as the sum N 3 terms, i.e., 

N 3 

w(Y, a'; a, r ) =  ~, w(k)(r ', dr'; dr, r) (78) 
k = l  

each of which is of the generic form: g*fldr'm'c N -  r Y N - m ' ,  where g* may 
be any of the a*, c*, d*, f~*. To this term we associate the vertex con- 
figuration of Fig. 6 where l +  m = l' + m' (rood N). This correspondence is 
then one to one with all the configurations of Fig. 4. Consequently we see 
that the c( transformation performs the mapping: 

cg: g*aldr,mzN r y N _ m , _ _  * g~GN zdr,N_m('r,,~' 

Let us label each site of the square lattice by (i, j )  where i = 1, 2 ..... M 
and j =  1, 2 ..... M'. Thus at a vertex (i, j )  the statistical weight is a function 
of ru, dru, ai+l.J, and r u + l ,  namely, 

Wij = W(Tij, dry~; Gi+ 1,j, "~i,j+ 1 ) (79) 

~ rn s 

Fig. 6. Weak-graph symmetry correspon- 
dence between term g*~zl~fmzN-rz T M  and 
vertex configuration. 

~ m 

g~ 0 '~ o.'mT N- ~'.[. N-m' 
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The partition function of the system can now be written as a summation 
over all bond spins: 

~MM'(a, C,, dm, ftm) = ~ wn w12"'" NMM (80) 
{~ 

Upon substitution of Eq. (78) into the right-hand side of Eq. (80), we 
obtain a sum of N 3~/a4' terms of the form ,,,(~,,),A,Ik12),vl~ '~12 .. . . . .  '~MM'/kMM'), each k,/runs 
from 1 to N3; now each of such term represents an assignment of allowable 
vertex configurations on the MM'  sites of the lattice, due to the correspon- 
dence defined after Eq. (78). On each bond, for example the one connecting 
vertex (i, j)  to vertex ( i - 1 ,  j), appears a product of % a  o , p  q p from vertex 
(i, j) and q from vertex ( i -  1, j)  as shown in Fig. 7, in the expansion of the 
right-hand side of Eq. (80). We have to sum over all values of bond spins of 
the lattice, in particular over all Z(N) values of a 0. The contribution of this 
summation is only nonzero if and only ifp + q = 0 (mod N), in other words 
if the vertex configuration at vertex (i, j) and the vertex configuration at 
vertex ( i -  1; j) display the same value of the bond spin a(j; note that one 
of the configurations is of the conjugate type so that q = N -  p essentially. 
Repeating the same argument for all bond spins of the lattice we find that 
our original covering of the lattice by vertex configurations of weights a, % 
dm, f#n may be replaced by configurations of another Z(N)-vertex system 
with weights a*, c*, d*, and f 'm, i.e., 

~MM,(a, C,, din, ftm) = ~MM'(a*, C7, d*,, f 'm) (81) 

Equation (77) defines a transformation D which is a complex linear trans- 
formation of the weights: 

D: (a, ct, dm, f~m) --+ (a, c,, din, fl~) (82) 

Only the fourth power of D is equal to the identity, thus D 2 and D 3 are still 
nontrivial. To prove this it is sufficient to iterate Eq. (77), a simple but 
cumbersome procedure which shall not be presented here. 

The conditions under which Eq. (77) define a real involution is 

C l = CN_I, dm = d N _  m 

f l m =  f N  1,m=f/,N m =  fX-- l ,N-- I  (83) 

which mean that the Z(N)-vertex configurations are now invariant under 
cg. There are then only (p + 1 )2 [resp. (p + 2) 2 ] real weights for N =  2p + 1 
(resp. N = 2 p + 2 )  and Eq. (77) reduce now to, for N = 2 p +  1, 
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f , , , -  

a = 2 p + l  a * + 2  2 c * + 2  ~ d * + 4  ftm 
l = 1  r n = l  r e , l = 1  

1 { P P 2~ 
C,,=2p+l a * + 2  ~ c;~+2 Y, cos2--fi-~ml'd* 

l = 1  m = l  

P 2~r , . )  
+ 4 ~ cos2--fi-~mlf,,,,~ 

l , m  = 1 

1 { P 2re P 
dm,-2p+l a * + 2  Z c ~  ~ lm'c*+2 2 d* 

/ = 1  m = l  

P 2re , , )  
+ 4  2 c~ 2~-~mm f,m ~ 

l , m  = 1 

2 p + l  a * + 2  ~ c o s 2 ~ l m ' c * + 2  c o s - - l ' m d *  
/ = 1  = 1  2p+1  

P 2re , 2rE } 
+ 4 ,,m= y' 1 COS 2--7-77 ml COS ~ m'lf*~ 

for l',m'=l, 2,...,N-1 (84) 

For N =  2p +2  these equations become a bit more involved due to the 
presence of the weights Cp 1, dp_l, fp-1,,,,, fl, p l, fp 1,p ~. 

We observe that for N >  3, there are no set of nontrivial weights 
invariant under D, although D2=L To get a nontrivial set of invariant 
weights one should enlarge the symmetry of the weights by requiring that 

c t=c  for all l ' = 1 , 2  ..... N - 1  

dm=d for all m '=  1,2 ..... N - 1  

f t m = f  for all /', m '=  1, 2 ..... N - 1  (85) 

But these conditions describe precisely our restricted Z(N)-vertex 
model which has emerged from the partial-duality transformation of the 
PNN model. The D transform of the weights has now the simple form, for 
all N: 

a=N-l{a* + ( N -  l)c* +(N--1)d* + (N-- t)2f *} 

c = N - t { a  * + ( N -  1 ) c * - d *  + ( N -  1)f*} 

d= U-l{a * -  c* + (N-  1)d* q7 ( U -  1)f*} 

f =U-l{a * - c * - d *  + f*} (86) 

822/42/3-4-9 
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Note that for N = 2  we recover the formulas for the eight-vertex model 
after a reconversion of the weights to standard ones. The associated 
invariant manifold is given by the linear equation: 

a = c  + d +  ( N -  1 ) f  (87) 

It is of course symmetric in c and d, this fact reflects the invariance of the 
restricted Z(N)-vertex model under 90 ~ rotation of the lattice. Condition of 
self-duality under weak-graph symmetry of Eq. (87) is, using Eq. (66) 
simply 09 = c~" for the PNN model. 

All the symmetries considered here can be studied also in the Z ( N ) -  

belavin model, which is not invariant under 90 ~ rotation of the lattice; but 
there is a restricted Z(N)-Belavin model, which exhibits spin-flip invariance 
along an axis and has a self-dual manifold of weights under weak-graph 
symmetry similar to Eq. (87). (3~ At N =  2, i.e., the eight-vertex model all 
the symmetries of the Z(N)-Belavin model coincide with those studied here, 
this is because Eqs. (65) and (72) are then the same condition. 

Formulas (86) may be used to map a restricted Z(N)-vertex model to 
a Schultz-Perk model, where the f weight is zero. The situation is akin to 
that of a critical eight-vertex model which is mapped to a six-vertex model 
in the disorder phase through a weak-graph symmetry transformation. At 
this point it might be useful to point out that by inverting Eq. (86) and 
using Eq. (66) we obtain the vertex weights in terms of oJ and ~o": 

a* = 1 -  ( N -  1)~o" 

C* = 1 --09" 

d* = N o  and f *  = 0 (88) 

The dual invariant AN of Section 3 appears as 

(c*) 2 + (d*) 2 - (a*) 2 
A N = ( m  - 1 ) Nc*d*  ( X - -  2) 

( c* - a* )( d* - a* ) 

N c * d *  
(89) 

which is simply a generalization of the Lieb invariant of a six-vertex model; 
upon comparing Eq. (30) to Eq. (89) we now understand the meaning of 
the variables a and b introduced before. 

Finally, since the PNN model is equivalent to a staggered restricted 
Z(N)-vertex model, whereby weights c* and d* are exchanged on the two 
interpenetrating sublattices, which possess incidentally the same AN, the 
staggering effect disappears if c* = d*. This happens precisely when the self- 
duality condition of Section 3 is satisfied. However on this self-dual line, 
although we have a homogeneous Schul t~Perk vertex system, the weights 
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do not satisfy the integrability conditions, (ls~ except for N = 2  or for 
co=co", this la ter  case is treated in the next section on an anisotropic 
square lattice. 

6. THE N2-STATE POTS M O D E L  

In this section we consider the particular staggered vertex system 
representing an anisotropic N2-state Ports model. From Section 3 we see 
that A N ,  v = AN, , ,  ' = --1. The weights of the two interpenetrating sublattices 
are arranged as follows: 

ah = 1 + ( N -  1 )oh,  ch = 1 - cob, dh = Ncoh, fh = 0 
(90) 

a~=l+(N+l)co~, c~=Nco~, d~= 1 -co~, f ~ = 0  

We observe the disappearance of vertex configurations of weight f~, (resp. 
fh), leaving only one color vertices of weight a and two color vertices of 
weight c and d, which are staggered. Moreover, as in the six-vertex model 
we find 

AN,j= --1 ~ a j =  Cj+ dj, j=v,h (91) 

So, analogously we introduce the "staggered spectral" parameters: 

1 - cob NCO~ 
c~ - - -  and ~' - ( 9 2 )  

Nco h 1 -co~ 

of a canonical representation; after 
{Ncoh(1--cov)} ~ we obtain 

a h =  l + a ,  c h = ~ ,  d h = l ,  f h = 0  

a v =  l + a ' ,  c ~ =  ~', d ~ = l ,  f ~ = 0  

At  self-duality or non-staggering limit we have 

~ = ~ '  or (1 - COh)(1 -- COy) = N2covcoh (93) 

proper global normalization by 

This is precisely the model of Schultz called nonintersecting string model in 
Ref. 18. On a square lattice it may be described by the totality of N-color 
nonintersecting polygonal contours, because we have now a homogeneous 
system of N-color polygon corners of weights c = e and d =  1, in which 
only bonds of same color can cross each other with a weight a = 1 + e. It is 
known that the model is soluble and that its partition function obtained 
through the inverse relation is eaxtly that of a six-vertex model. (IS) 
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To clarify this last observation we recall that the N2-state Potts model 
is in fact also equivalent to a staggered-six-vertex model, with weights on 
the sublattices (see Ref. 31): 

ah = 1, bh = xh, ch = 1 + xhe ~, c'h = 1 + xhe -~ 

a~=x~,  b~= l ,  c v = x ~ + e  ~, c ' ~ = x ~ + e  -~ 
(94) 

The six-vertex model has a canonical parametrization with Lieb's 
invariant: 

(N2) 1/2 
A h = A~ = - c o s h  2 = 2 (95) 

and "staggered spectral" parameters c~ and ~' defined by 

sinh c~ e a h -  1 

xh - sinh(2 - c~) - (N2) 1/2 

s inh(2-cd)  e K"- 1 
x , =  sinh ~' (N2) 1/2 

(96) 

It is known (2'32) that the model is soluble for 

7~ 
c~=cz'+_ni-~ (n, mod 2) (97) 

For n = 0  we recover the nonstaggering case (or self-duality) and n = l 
corresponds to the antiferromagnetic critical regime of Baxter. (2~ It is now 
clear that (at self-duality) the partition function of the Schultz-Perk model 
coincides precisely with that of the six-vertex model, and this surprising 
fact occurs whenever the number of components of the Potts model is an 
exact square where two vertex representations of the Ports model coexist 
(incidentally this was known already for the 4-state Potts model). 

7. S O M E  EXTENTIONS A N D  C O N C L U S I O N S  

Before closing this study we would like to bring up a straightforward 
generalization of the PUN model, which consists of breaking the Z(N~)-  
symmetry down to the Z ( N ) |  Z ( N )  symmetry. For simplicity we assume 
the lattice to be isotropic and consider instead of Eq. (5) a bond energy 
depending on three coupling constants K, K', and K": 

f lH,  m = Ko + KB(Sn,  Sin) + K'B(S'n, S~)  + (N  - 1) K'B(S, , ,  S, ,)  B(S'~, S~)  

(98) 



Z(Na)-Spin Model 377 

For N =  2 we recover the Ashkin Teller model on an isotropic lattice. Par- 
tial duality on the spins S'n can still be performed, and a staggered Z(N)- 
vertex system emerges with the weights: 

a = exp{K+ K ' +  ( N -  1 )K"} - ( N -  1) exp { K -  ( N -  1 ) - 1 K ' -  K"} 

c=exp{K+K'+ (N-  1)K"} - e x p { K -  ( N -  1) IKt--Kn} 
d =  exp{ - ( N -  1)-IK+K'-K " } - ( N -  1 ) e x p { [ - K - K ' + K " ] ( U - 1 )  -1 } 

f = e x p { - ( N -  1)-IK+K'-K ' ' } - exp{[ -K-K '+K' ' ] ( x -  1) -1} 

(99) 

The staggering effect lies in the exchange of weights c and d on the two 
interpenetrating sublattices and disappears for d =  c or 

exp{K+K'+NK'}=exp{K-(U-l)-tK ' } + e x p { - ( u - 1 )  IK+K'} 

+ ( N - 1 ) e x p { - ( S - 1 )  I(K+K'-NK")} 

which is symmetric in K and K'. 
Now it is instructive to look at some special cases. Besides the PNN 

model, for which K=K', we have two other NZ-state spin system of 
interest. 

If K =  K', we will have two interacting N-state Ports models but non- 
equivalent to the PNN model for N >  2, because it has only a Z(N)| Z(N) 
symmetry and has a decoupling limit for K " =  0 where it reduces itself to 
two noninteracting N-state Potts models. 

Let us set K ' =  K" and recall it K, simultaneously we rename K by K". 
This is still a PNN model whose equivalent staggered vertex model has 
precisely the weights given by Eq. (88). This fact confirms the consistency 
of the weak-graph symmetry given by Eq. (86) and generalizes a situation 
well known in the Ashkin-Teller model. 

By setting K' = K" = 0 in Eq. (99), we obtain the representation of the 
N-state Potts model by a special staggered Schultz-Perk vertex system 
having only two non-zero weights: 

a=Ne K, c = 0 ,  d=Nexp[ - (N-  1)-~K] (100) 

The weights c and d alternate on the sublattices which form the medial lat- 
tice of the original lattice. Close inspection shows that this is a represen- 
tation proposed long ago by Wu and Lin (22) for the Ising model and exten- 
ded to other spin value by Wu. (33) One could have equally set K =  K " =  0 
and obtain another representation of the N-state Potts model by a different 
staggered Schultz-Perk vertex model, but this vertex model is related to the 
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one defined by Eq. (100) by weak-graph symmetry, or equivalently by spin 
duality [see Eq. (20)]. 

It is hoped that this study serves as an introduction to future 
investigations on Z(N)-spin systems in two dimensions which depend on 
two parameters. We have not touched here the critical behavior of the 
system. Since the self-dual line is not exactly soluble for N > 2, little can be 
said about the nature of the transition along the self-dual line or across the 
two other presumed critical lines bifurcating from the multicritical point 13 
in Fig. 1. It is perhaps useful to await for results from numerical 
simulations to probe deeper into the structure of the system. Nevertheless 
one may try to seek an equivalence with a generalized Coulomb gas as 
done by L. P. Kadanoff (34~ for the Ashkin-Teller model and Potts model 
and more recently by B. Nienhuis for other systems, f35) to extract some 
more information. On the other hand the new Z(N)-symmetric vertex 
system is also of interest. One may search for integrable subfamilies which 
in some appropriate limit coincide with the integrable families found by 
Schultz and PerkJ 18) One may eventually seek a spin representation of 
these Z(N)-vertex model which would generalize the Kadanoff-Wegner 
Ising spin representation of the eight-vertex model. (36~ 

To summarize, in this paper we have basically brought about some 
new aspects of a class of Z(N2)-spin system depending on two parameters 
probond. We have found its equivalent vertex model and studied an even 
more general Z(N)-vertex model which displays a pseudo weak-graph sym- 
metry. Some by-products are the representations of the NZ-state and N- 
state Potts models by two special Schultz-Perk vertex systems which shed 
light upon many connections among some statistical systems in two dimen- 
sions. Last but not least, we should point out that the bulk of these results 
Can only be obtained because of the Z ( N  2) symmetry assumed from the 
beginning for the spin system. 
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